
Fundamentals of 8085
Microprocessor Programming

Authors:
Dr. Manish Kashyap

Tushar Kukreti
Vivek Kumar

Published by:
Vandana Publications, Lucknow

Page 1 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

FUNDAMENTALS OF 8085
MICROPROCESSOR PROGRAMMING

by

Dr. Manish Kashyap

Tushar Kukreti
Vivek Kumar

Page 2 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

Published by:
Vandana Publications

78/77, New Ganesh Ganj, Opp. Kaysins Lane, Aminabad Road,
Lucknow – 226018, Uttar Pradesh, INDIA

Email: info@vandanapublications.com

Copyright © Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

All rights reserved. No part of this publication may be reproduced or transmitted in any form or
by any means, electronic or mechanical including photocopy, recording or by any information

storage and retrieval system, without permission in writing from the copyright owner.

ISBN

978-93-90728-96-1

DOI
10.5281/zenodo.14885842

First Published

February 2025

All disputes are subject to Lucknow jurisdiction only.

Typesetting / Printed at:
Yellow Print, G-4, Goel Market, Lekhraj Metro Station, Indiranagar, Lucknow, India.

Ph: +91-7499403012

E-mail: yellowprints12@gmail.com

AUTHORS ARE FULLY LIABLE FOR ORIGINALITY AND WORDING

Every effort has been made to avoid errors or omissions in this publication. In spite of this, some
errors might have crept in. Any mistake, error or discrepancy noted may be brought to our notice
which shall be taken care of in the next edition. It is notified that neither the publisher nor the
author or seller will be responsible for any damage or loss of action to anyone, of any kind, in
any manner, therefrom. For binding mistakes, misprints or for missing pages etc., the publisher9s
liability is limited to replacement within one month of purchase by similar edition. All expenses
in this condition are to be borne by the purchaser.

Page 3 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

DISCLAIMER OF WARRANTY

The technical descriptions, procedures, and computer programs in this book have been
developed with the greatest of care and they have been useful to the author in a broad range of
applications; however, they are provided as is, without warranty of any kind.

The authors of the book titled <Fundamentals of 8085 Microprocessor Programming=,
make no warranties, expressed or implied, that the equations, programs, and procedures in this
book or its associated software are free of error, or are consistent with any particular standard of
merchantability, or will meet your requirements for any particular application. They should not
be relied upon for solving a problem whose incorrect solution could result in injury to a person
or loss of property. Any use of the programs or procedures in such a manner is at the user's own
risk. The editors, author, and publisher disclaim all liability for direct, incidental, or consequent
damages resulting from use of the programs or procedures in this book or the associated
software.

Page 4 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

CONTENTS

Topic/Program No. Title Pg. No.
 Preface 5

 Acknowledgements 6

Topic/Program 1 Introduction to programming model of 8085 ……………… 7

Topic/Program 2 Learning to deal with registers …………………………….. 8

Topic/Program 3 Learning to deal with memory……………………………... 9

Topic/Program 4 Using HL register pair as a pointer via M register………….. 10

Topic/Program 5 Learning to deal with carry flag……………………………. 11

Topic/Program 6 Learning to deal with parity flag…………………………… 12

Topic/Program 7 Learning to deal with auxiliary carry flag………………….. 13

Topic/Program 8 Learning to deal with zero flag……………………………... 14

Topic/Program 9 Learning to deal with sign flag……………………………... 15

Topic/Program 10 Learning how to deal with stack memory…………………... 16

Topic/Program 11 Learning to create out of sequence jump using labels……… 17

Topic/Program 12 Learning to create loop using labels………………………... 19

Topic/Program 13 Learning to deal with input and output devices connected in IO mode
to 8085 microprocessor…………………………...

21

Topic/Program 14 Learning subroutines or functions………………………….. 22

Topic/Program 15 Learning software interrupts………………………………. 23

Topic/Program 16 Learning Hardware Interrupts……………………………… 25

Topic/Program 17 Learning Assembler Directives…………………………….. 26

Topic/Program 18 Instruction set of 8085 microprocessor…………………….. 28

Page 5 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

PREFACE

This book gets the user started with programming the 8085 based microcomputer
systems. The first topic is all about getting to know the programming model of 8085
microprocessor. Once that is understood, the rest topics deal with operating various parts of the
microprocessor like CPU registers, flag register, stack, memory etc. Programming concepts
based on if-else conditions, loops are shown to be implemented by conditional and unconditional
jump statements which are a part of the instruction set of 8085 microprocessors.

The topics are so designed so that the user can the operating procedure through
illustrative programs and then can apply those concepts in finding solutions to a given problem.

Page 6 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

ACKNOWLEDGEMENTS

The authors acknowledge the direct and indirect contribution of everybody who has
inspired writing this book. We would like to acknowledge the authors of the numerous books and
articles that we consulted during the writing of this book. Their work served as a valuable
resource and helped shape our perspective on the subject.

Finally, we want to thank Department of Electronics and Communication Engineering,
Maulana Azad National Institute of Technology for their unwavering love, patience, and
understanding. Their support has been instrumental in every aspect of our professional life, and
we dedicate this book to them.

Page 7 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

Topic / Program 1. Introduction to programming
model of 8085

The programming model of a microprocessors is programmer9s view of the computer. That is to
say - what all hardware portion is accessible to the programmer for manipulating in the program.
For 8085 microprocessors, it is as follows –

A (8 bit) S Z X AC X P X C
B (8 bit) C (8 bit)

D (8 bit) E (8 bit)

H (8 bit) L (8 bit)

PC (16 bit)

SP (16 bit)

M (8 bit)

To be able to perform any operation, microprocessor needs memory. Memory can be of
many types. Shown above is the memory of CPU called CPU registers. This memory is internal
to CPU and is integrated into the microprocessor chip itself. A, B, C, D, E, H, L, M, PC and SP
are registers of 8085.

Register A (8 bit or 1 byte register) is called as accumulator register. As the name
suggests, it accumulates the results of most of the arithmetic/ logical and many more instructions
in itself after computation.

Registers B, C, D, E, H and L (8 bit or 1-byte registers) are general purpose registers
which can be used to store 8-bit data. Some registers can be used in pair like BC, DE and HL
(and not CB, ED and LH). Similarly, B cannot be paired with H and so on. Register pairs are
useful to store 16 bit or one word data. Some register pairs have commands dedicated to them
like LDAX B (discussed later). The combination of register A and F (flag) is called as program
status word i.e. PSW.

HL Register pair is used as pointer register together with M (8 bit) register (not a part of
hardware, but just a mirror register that mirrors the content of memory location pointed to by HL
register pair). Although memory operations are dealt in relevant section but here it suffices to
understand the following – 8085 is a 8 bit microprocessor because it has a bidirectional data bus
is of 8 bits. It has a 16-bit unidirectional address bus. To access a memory location from
externally interfaced memory (other than CPU registers shown above), a 16-bit (4 hexadecimal
digit) address is put onto address bus. For pointer operation, if we put the 16-bit address in HL
register pair, the data of that memory location which is 8-bit or a byte is copied into M register
automatically. Also, if we edit that data at the memory location, the change is automatically
reflected in M register and vice versa.

Page 8 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

PC or program counter register holds the address of next instruction to be executed in
itself. Similarly, SP or stack pointer keeps the address of top of stack in itself (More about SP in
the relevant section)

The register shown to right of accumulator is called as flag register. It has 8 bits and each
bit represents a special condition after the execution of a given instruction in 8085. Out of 8 bits
only 5 bits are useful and 3 are don9t cares (marked as 8x9). The useful bits are C-carry, P-parity,
AC- Auxiliary carry, Z-Zero and S- Sign. These are discussed in relevant sections.

Topic / Program 2. Learning to deal with registers

2.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- Understanding register's is an
important part in the journey to explore 8085
microprocessor. Registers are like small, high-

speed memory locations within the processor
itself.
The 8085 microprocessor provides a set of 6
8-BIT general purpose registers, that are
register B, C, D, E, H, L along with the
accumulator (register A). Each of these
general-purpose registers are used to store any
temporary 8 bit data or be combined into 16-

bit register pairs (BC, DE and HL pair only)
for 16 bit data storage.

The 8085 microprocessor offers a variety of
instructions for manipulating data in its registers

some of the basic instructions are-

1.MVI :- This instruction is used to load (Move)
any 8 BIT immediate data directly into a register.
e.g :- MVI A, 20H

The above line of code store's 20H into the
accumulator. By immediate data we mean that the
data is a part of instruction itself.

2.MOV:- This is another fundamental instruction
in 8085, that is used to copy the content of source
register into destination register.
e.g :- MOV B, C

The above line of code will copy the content of
register C (source) into register B (destination).

Code location 5000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA
Data used in memory – Shown for the main
program below

Address Data Address Data

5000 H 3E 5008 H 00
5001 H A7 5009 H 00
5002 H 47 500A H 00
5003 H 21 500B H 00
5004 H 10 500C H 00
5005 H 28 500D H 00
5006 H 76 500E H 00
5007 H 00 500F H 00

3.LXI:- This instruction is used to load any 16 bit
data to the specified register pair. This can be
thought of as 16 bit equivalent of MVI command.
e.g :- LXI B, 2010h

The above code will load 2010H (a 16 bit data)
into the register pair BC .

NOTE:- In 8085 programming, register pairs are
represented by the first register of the pair. e.g:-
In above code register pair BC is represented by
B. Also note that if there is 8X9 in the mnemonic
of the command then most probably it deals with
16 bit operation.

Page 9 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

2.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI A,0A7H Load9s A7h into register A (Accumulator). H is appended to the end of
the number to tell the simulator that the number is to be treated as
hexadecimal. One can use D for decimal or B for binary.

2 MOV B,A Copies the content of register A (A7H) into register B

3 LXI H,2810H Load9s 28H to register H and 10H to register L

4 HLT Halt/stop the computer.

2.3 Results and Further directions – The above program successfully demonstrate the basic
operations on register.
Note:- Whenever we write a hexadecimal number starting with non-numeric digit (A, B, C, D, E,
or F), it is necessary to add a leading zero (0) when you perform the experiment on simulator just
to tell the simulator that it is actually a number that you have entered. On the actual hardware kit,
it is not required.

Topic / Program 3. Learning to deal with memory

3.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- This program will help us learn
about the externally interfaced memory of
8085. Since, the memory of internal registers
is limited, in 8085 64 Kilo Byte (KB) of
externally interfaced memory can be attached.
Firstly this number 64 KB is not arbitrary. It
comes from the size of address and data bus.
Since the address bus is of 16 bits, we can
have at most 216 total addresses (or memory
locations). 216 = 26 × 210 = 64 × ����.
Also, the data bus is of 1 byte (8 bits) and
hence every memory location has a byte size
storage. Hence the complete memory is of 64
Kilo Byte.

Since addresses are of 16 bits, they can be
represented by hexadecimal number of 4
digits and hence all addresses will range from

Code location 2000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA

Data used in memory – (Shown for both
data and code memory)
Address Data Address Data

1000 H 05 2003 H 3C
1001 H 00 2004 H 32
1002 H 00 2005 H 01

-- -- 2006 H 10
-- -- 2007 H 76

2000 H 3A 2008 H 00
2001 H 00 2009 H 00
2002 H 10 200A H 00

Page 10 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

0000 to FFFF in hexadecimal. Similarly,
every memory location can hold 8 bit data
and hence the data range will be 00 to FF in
hexadecimal.

In this program we aim to access one memory
location from externally interfaced memory.
Read data from it and write data to it. To that
end, we assume that at memory address
1000H a data byte of 05H is kept. We intend
to read it inside CPU (Accumulator register),
modify it by increasing its value by one and
storing the modified result at the next location
which is 1001H. The result should be 06H
after execution of the program.

Shown above is a small section of total
memory. Notice that data is stored at location
1000 H as 05 H. Then from location 2000 H
the hexadecimal equivalent of the code is
stored. We do not need to worry about those
numbers now. They will become clear to us in
relevant sections.

At location 1001 H, currently 00 H is stored.
After execution of the program, it will
become 06 H. Only the locations used in the
code are shown highlighted. Remember –
whether it is code or data, it is stored in the
same 64 KB memory at different locations

3.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 LDA 1000H LDA stands for loading into Accumulator, 1 byte data
from memory location 1000 H

2 INR A INR increments the specified register by 1

3 STA 1001H STA stores the content of accumulator to the specified
address. (In this case 1001 H)

4 HLT Halts/Stops the computer

3.3 Results and Further directions – There are many more ways to access memory. They are
discussed later in this document. Also note that if you are to access one memory location (read or
write), you will also be able to read multiple such locations by doing the read and/or write
operation in a loop. Loops are discussed in the coming section of this document.

Topic / Program 4. Using HL register pair as a pointer
via M register

4.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- In this program we aim to use the
HL pair as a pointer.

H and L registers when used together can be

Code location 5002 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA

Page 11 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

used to hold the 16-bit data which is treated as
address if we use it with M register. The
upper 8 bits are stored in H and the lower 8
bits in L. The content at this location can then
be accessed using M register.

The code explains how to copy the contents
of the A(Accumulator) to the specified
location by HL pair using the M(Memory)
register.

Data used in memory – shown below for
data and program both after execution of
progr.am

Address Data Address Data

5000 H 15 5008 H 77
5001 H 00 5009 H 76
5002 H 3E 500A H 00
5003 H 15 500B H 00
5004 H 26 500C H 00
5005 H 50 500D H 00
5006 H 2E 500E H 00
5007 H 00 500F H 00

The content of memory location 5000H
before execution will be 00H, after execution
it will be 15H (as shown)

4.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI A,15H Moving a dummy value (say 15h) to A(Accumulator).
2 MVI H,50H Loading register H with Upper 8 bits of address. (here 50h)
3 MVI L,00H Loading register L with Lower 8 bits of address.

(here 00h). Alternatively, LXI H,5000 can be used.
4 MOV M,A Moving the contents of Accumulator to location in HL pair using

M(Memory)
5 HLT Halt the program

4.3 Results and Further directions – The program efficiently uses the M register and updates
the content at the location specified by HL pair. Note that operations like MVI M, (8 bit data)
and INR M are also valid operations and might be useful in other use cases.

Topic / Program 5. Learning to deal with carry flag

5.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- In this experiment, we are going
to discuss the carry flag. As we have already
learned about flags in experiment 5, we know

Code location 5000 H
Subroutine 1 location NA
Subroutine 2 location NA

Page 12 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

that flags serve as status indicators, providing
information about the outcome of arithmetic
and logical operations.
When performing arithmetic operations such
as addition or subtraction, if the result
exceeds the capacity of the register, the carry
flag is raised to signal a carry-out or borrow
situation.
For instance, Consider adding two numbers
that surpass the register size or subtracting a
larger number from a smaller one. In both
cases, the resulting operation triggers the
carry flag to be raised, ensuring the processor
can accurately handle overflow and borrow
situations.

Interrupt location NA
Data used in memory – Shown for the main
program below

Address Data Address Data

5000 H 3E 5008 H 00
5001 H FF 5009 H 00
5002 H 06 500A H 00
5003 H 01 500B H 00
5004 H 80 500C H 00
5005 H 76 500D H 00
5006 H 00 500E H 00
5007 H 00 500F H 00

5.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI A,0FFH Loaded maximum possible 8-bit number in register A

2 MVI B,01H Load any dummy value (say 01H) to register B

3 ADD B Add the content of register B to A, (carry flag is set to 1)
4 HLT Halt/stop the computer

5.3 Results and Further directions – The sample code clearly illustrates the fundamental
operation of the carry flag. The addition of 01 H With Register A which was preloaded with the
maximum 8-bit value (FFH), sets the carry flag (i.e. make its value 1), showcasing its role in
signaling arithmetic overflow. In addition to arithmetic operations like addition and subtraction,
the carry flag in the 8085 microprocessor can be set in several other scenarios like logical
operations, Rotation, Shifting, Increment, Decrement and many other operations, its applications
are not limited and is very useful in conditional branching and jumping operations as will be
demonstrated later.

Topic / Program 6. Learning to deal with parity flag

6.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- This experiment aims at
explaining the working of the parity flag and

Code location 5000 H
Subroutine 1 location NA

Page 13 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

how to deal with it.
As discussed in Experiment 5, Flags are the
special purpose registers whose value is set
(1) or reset (0) after any arithmetic or logical
operation is performed. Parity flag keeps in
account if numbers of set bits are odd or even
in the binary equivalent of the result in
accumulator. The operation must be either
arithmetic or logical.
If the number of 1s is even in accumulator
then the parity flag is set (1). If the number of
1s is odd, the parity flag is reset (0). Another
way to remember this is that the number of
ones in accumulator register and parity bit
combined should always be odd. That is why
we say that 8085 works on odd parity.

Subroutine 2 location NA
Interrupt location NA

Data used in memory – Shown for the main
program below

Address Data Address Data

5000 H 3E 5008 H 76
5001 H 02 5009 H 00
5002 H 06 500A H 00
5003 H 02 500B H 00
5004 H 04 500C H 00
5005 H 80 500D H 00
5006 H C6 500E H 00
5007 H 02 500F H 00

6.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI A,02H Move a dummy value (say 02) to A(Accumulator).
2 MVI B,02H Move a dummy value (say 02) to B.
3 INR B Increase the value of B by 1. (Parity is set to 1)
4 ADD B Add the contents of B to A (Parity is set to 1)
5 ADI 02H Add 02 to A (Parity is reset to 0)
6 HLT Halt/Stop the computer.

6.3 Results and Further directions – The parity flag has been understood with the help of a
sample program.

Topic / Program 7. Learning to deal with auxiliary
carry flag

7.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- This experiment aims at
understanding and implementing the auxiliary
carry.

Note below the numbering of bits from Least

Code location 5000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA
Data used in memory – Shown for the main

Page 14 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

significant bit or LSB (numbered 0) to most
significant bit or MSB (numbered 7). A group
of 4 bits is called as nibble.

7 6 5 4 3 2 1 0

Upper nibble Lower nibble

During arithmetic operations involving
addition or subtraction, if a carry is generated
from the third to the fourth bit (or from the
lower nibble to upper nibble), it sets the
auxiliary carry flag.

program below

Address Data Address Data

5000 H 3E 5008 H 00
5001 H 09 5009 H 00
5002 H 06 500A H 00
5003 H 08 500B H 00
5004 H 80 500C H 00
5005 H 76 500D H 00
5006 H 00 500E H 00
5007 H 00 500F H 00

7.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI A,09H Load9s 09h (0000 1001) into register A (Accumulator)
2 MVI B,08H Load9s 08h (0000 1000) into register B

3 ADD B Add the content of register B with A (A = A+B)
4 HLT Halt/Stop the computer

7.3 Results and Further directions – In the preceding program, we gained insight into the
generation of an auxiliary carry. When the accumulator, initially loaded with 09H (binary = 0000
1001), underwent addition with register B, holding the value 08H (binary = 0000 1000), a carry
emerged from 3rd to 4th bit (or from lower to higher nibble). This occurrence resulted in the
setting of the auxiliary carry flag. Although auxiliary carry is not used frequently during the 8085
programming, but its use cases are not limited. Some of its uses are: - Certain instructions in the
8085-assembly language, such as DAA (Decimal Adjust Accumulator), rely on the auxiliary
carry flag to adjust the result of arithmetic operations. In Binary Coded Decimal (BCD)
arithmetic, where numbers are represented in base-10 with each digit encoded in binary, the AC
flag is particularly useful for detecting carry-out from the lower nibble to the higher nibble,
ensuring accurate BCD arithmetic operations)

Topic / Program 8. Learning to deal with zero flag

8.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- This experiment is all about the
working of zero flag and how to deal with it.

Code location 5000 H
Subroutine 1 location NA

Auxiliary Carry

Page 15 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

As discussed earlier, Flags are the special
purpose registers whose value is set (1) or
reset (0) after any arithmetic or logical
operation is performed.

Zero flag checks if the result obtained after
any arithmetic or logical operation is zero or
not.
If the result is zero, the zero flag is set (1).
If the result is a non-zero number, the zero
flag is reset (0).

Subroutine 2 location NA
Interrupt location NA

Data used in memory – Shown for the main
program below

Address Data Address Data

5000 H 06 5008 H 00
5001 H 01 5009 H 00
5002 H 05 500A H 00
5003 H 04 500B H 00
5004 H 3E 500C H 00
5005 H 05 500D H 00
5006 H 97 500E H 00
5007 H 76 500F H 00

8.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI B,01H Move a dummy value (say 01) to B.
2 DCR B Decrease the content of B by 1. (Zero flag is set to 1)
3 INR B Increase the value of B by 1. (Zero flag is reset to 0)
4 MVI A,05H Move a dummy value (say 05) to A(Accumulator).
5 SUB A Subtract A from A. (Zero flag is set to 1)
6 HLT Halt/stop the computer.

8.3 Results and Further directions – The experiment demonstrates the functionality of the
zero flag. Zero flag finds its uses in result evaluation, conditional looping instructions (to be
discussed later in the book) and even when comparing two numbers.

Topic / Program 9. Learning to deal with sign flag

9.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- In this Experiment we are going to
discuss the sign flag. Sign Flag is again a very
important flag to identify whether the result of
an operation is positive or negative.

If the Most Significant Bit (MSB) of the
result is 1 then it refers to a negative integer

Code location 5000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA

Data used in memory – Shown below for
main code

Page 16 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

and the Sign Flag is set to (1). And if the
MSB of the result is 0 then it refers to a
positive integer and the Sign Flag is again
reset to (0).

The most common use of this flag is found in
branching operations, when distinct actions
need to be taken based on whether the result
of an operation is positive or negative. For
instance, we may execute a specific task if the
result is positive and proceed with a different
task if it's negative.

Address Data Address Data

5000 H 3E 5008 H 00
5001 H 04 5009 H 00
5002 H 06 500A H 00
5003 H 08 500B H 00
5004 H 90 500C H 00
5005 H 76 500D H 00
5006 H 00 500E H 00
5007 H 00 500F H 00

9.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI A,04H Load9s 09h (0000 1001) into register A (Accumulator)
2 MVI B,08H Load9s 08h (0000 1000) into register B

3 SUB B Subtract the content of register B with A (A = A-B)
4 HLT Halt/Stop the computer

9.3 Results and Further directions – In the above program, when register A (preloaded with
04H) is subtracted by B (preloaded with 08H), then the result is a negative number which is
reflected by the sign flag.

Topic / Program 10. Learning how to deal with stack
memory

10.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- To learn operation of stack

In 8085, by default the stack is implemented
from the bottom part of memory. Stack, as the
name suggests, is last in first out list. It can
also be initialized from anywhere in the
memory by using SPHL command which
works as follows – First HL pair is initialized
by a desired address from where we want the
stack to start. Then SPHL copies that starting

Code location 3000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA

Data used in memory – Shown for main
program and stack (Status after execution of
line no. 4 in code)
Address Data Address Data

3000 H 21 3008 H E1

Page 17 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

data into SP which is stack pointer and keeps
the track of current top of stack (assumed
used). PUSH command puts 16 bit data into
the stack in 2 locations over the top of stack
in little endian format. Suppose that the data
was in register pair BC to begin with, PUSH
B will put the data from higher order register
B to higher address in memory out of the two
bytes that are going to be filled and register C
i.e., the lower order byte will be stored at
lower order address out of the two locations
being used.

3001 H 0F 3009 H 76
3002 H 50 300A H 00
3003 H F9 -- --

3004 H 01 500C H 00
3005 H 13 500D H 13
3006 H 12 500E H 12
3007 H C5 500F H 00

Similarly, POP command is used to take 2-

byte data from stack. Hence stack pointer is
decremented by 2 after every PUSH operation
and incremented by 2 after every POP
operation.

10.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 LXI H,500FH Initialize HL pair by desired top of stack address.
2 SPHL Top of stack initialized to 500FH (SP = 500FH)
3 LXI B,1213H Load B with 12 and C with 13.
4 PUSH B The content of BC is stored on stack as follows - (SP=500DH,

loc 500DH data=13, loc 500EH data =12)
5 POP H 2 bytes from the stack are stored in the HL pair in little endian

format as follows- SP=500DH, H=13, L=12)
6 HLT Halt/stop the computer.

10.3 Results and Further directions – The above code highlights the basic implementation of
stack. Readers to note that the Push and Pop instructions can only be used with register pairs like
BC, DE and HL. The default working of stack is the pointer is whenever the push instruction is
implemented, the stack pointer is decremented by 2 and then the value gets stored using little
endian format. The stack is also useful when we want to manipulate the content of flag registers
and Accumulator as one entity known as PSW (Program Status Word) (will be discussed later).
This is one indirect way of altering the content of flag registers.

Topic / Program 11. Learning to create out of
sequence jump using labels

11.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Page 18 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

Objective- Labels are symbolic
names given to memory
addresses in the program. They
serve as markers or placeholders
to represent specific memory
locations. Labels make code more
readable and maintainable by
providing meaningful names
instead of raw memory addresses.
They are commonly used with
jump and call instructions to
specify the location for
branching.
For the simplicity of the program,
we will be using only
unconditional jump (JMP).
It is worthwhile to mention that
labels do not have opcode, and
therefore, when programming on
the actual kit, the exact address
must be given along with jump
instruction.

Code location 5000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA

Data used in memory – (The hexadecimal equivalent of
code is shown below to trace the location of L1 label in
the program. Note all the memory locations and
corresponding data is in hexadecimal numbers.)

Address Data
Instruction Address Data

Instruction

5000 3E

MVI A,02H
5008 80 L1: ADD

B

5001 02 5009 76 HLT

5002 06

MVI B,03H
500A 00

5003 03 500B 00

5004 C3

JMP L1
500C 00

5005 08 500D 00

5006 50 500E 00

5007 90 SUB B 500F 00

11.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 MVI A,02H Dummy line of code

2 MVI B,03H Dummy line of code

3 JMP L1 Unconditional Jump to L1 label (defined in line 5)
4 SUB B This statement will be skipped due to jump

5 L1: ADD B Defining L1 label
6 HLT Halt/Stop the computer

In the above code let us first understand how to create a label and jump to it. The first two lines
of code are not achieving any great purpose but they are just there to give code some length –
they are dummy lines. In line number 3, unconditional jump statement JMP is used that wants to
make a jump to label L1 (this L1 could be any name one desires to have). On execution of this
line, the control will jump to line number 5 where this label is defined (notice the syntax of
defining a label). This way line number 4 will be skipped. Any number of lines can be skipped as
desired in a code.

Page 19 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

Assuming that we started writing our code in memory from location 5000H we now need to
understand what is label L1 (which could be any name the user chooses) as it is not a part of
instruction set of 8085. Refer to the memory table where the code together with the number of
bytes it consumes in the memory is shown. For an example, MVI A,02H consumes two bytes in
memory and hence two memory locations 5000 H and 5001 H are used. We need to see what is
the hexadecimal equivalent of L1 in JMP L1. It turns out that the hexadecimal equivalent of JMP
is C3 and L1 is 5008 H (read in little endian format). So, a label is a 2-byte data. Interestingly at
location 5008 H in memory, label L1 is defined. So, a label is just a nickname of address.
11.3 Results and Further directions – Note that even if the code were written as follows-

MVI A,02H
MVI B,03H
JMP 5008H
SUB B
ADD B
HLT

Assuming we start entering the code in memory from location 5000 H only, it would make no
difference. But by using label the code was more radiable and we need not bother about the
starting location of the code. We could have started from anywhere. But in the second code we
were bound to start from 5000 H, only then, 5008 H would be the desired location of jump.
Labels can be conditional too. They will be discussed in next program. Labels find multiple uses
like loop creation, function definition etc. as discussed in coming programs.

Topic / Program 12. Learning to create loop using
labels

12.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- Loops are one of the most
important parts of any programming
language, they help the programmer to iterate
through the same task with a smaller set of
code.
In our previous experiment (Experiment 13),
We have already seen how to jump to a
particular memory location using basic JMP
instruction. We can also jump to other
locations by using conditional Jumps which
are only defined when specific conditions are

Code location 5000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA
Data used in memory – Shown for main
code below

Address Data Address Data

5000 H 97 5008 H C2
5001 H 06 5009 H 05
5002 H 01 500A H 50

Page 20 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

met. Else they are ignored. Some commonly
used conditional jump instructions are:

1. JC : Jump if carry flag is set (1)
2. JNC: Jump if carry flag is reset (0)
3. JZ : Jump if zero flag is set (1)
4. JNZ: Jump if zero flag is reset (0)

With the help of these instructions, we can
achieve looping technique by defining labels
and jumping to them until a particular
condition is met.

5003 H 0E 500B H 76
5004 H 0A 500C H 00
5005 H 80 500D H 00
5006 H 04 500E H 00
5007 H 0D 500F H 00

Once the condition is fulfilled, the loop
terminates, allowing the program to proceed
beyond the loop structure.

12.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

In the example below, we have developed a simple program to sum the first 10 positive integers
from 1 to 10. To accomplish this task, we initialized our counter using register C by 0AH
(decimal 10) and cleared the accumulator to 0 which will hold the result. Utilizing a label 'L1',
we iterated through a loop until our counter (register C) reached 0.

Ins. No. Mnemonics Explanation

1 SUB A Clearing register A by A = A - A

2 MVI B,01H Load 01H in register B (first number to be added to
accumulator)

3 MVI C,0AH Load 0Ah value in register C (we will use this as counter for
our loop – it will be decremented once every time the loop
runs. The loop will terminate when C has 00H in it)

4 L1: ADD B Added content of register B with A (successively)

Loop
body

5 INR B Increment content of register B by 1

6 DCR C Decrement content of register C by 1

7 JNZ L1 Jump to label L1, if zero flag is not set
8 HLT Halt/Close the computer

12.3 Results and Further directions – The result of execution of above is 37H in accumulator
which is equivalent to 55 in decimal. There can be loops inside loops (called nested loops).
Using unconditional jump statement, infinite loop can be made if it is so desired.

This demonstration illustrates a foundational approach to implementing looping
techniques in 8085 assembly programming. There are some other conditional jump instructions
that can be used to create loops, such as-

JP : Jump if result of an operation is positive (Sign flag is reset (0))
JM : Jump if result of an operation is negative(Sign flag is set (1))
JPE: Jump if even parity

JPO: Jump if odd parity

Page 21 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

Topic / Program 13. Learning to deal with input and
output devices connected in IO mode to 8085

microprocessor.
13.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- In this article we will try to get an
input from the input port 80H into the
accumulator, increment that by one, and
output it at port 81H.

Remember that IO devices can be connected
in two modes – 1) Memory mapped 2) IO
mapped.

In the first mode, IO devices are connected in
the same address space where memory is
connected. Hower in the later mode, IO
devices are connected through data bus and
thus a 2 hexadecimal digit address.

Code location 5000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA
Data used in memory – Shown for main
code below

Address Data Address Data

5000 H DB 5008 H 00
5001 H 80 5009 H 00
5002 H 3C 500A H 00
5003 H D3 500B H 00
5004 H 81 500C H 00
5005 H 76 500D H 00
5006 H 00 500E H 00
5007 H 00 500F H 00

13.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

There are only two commands to be used IN for taking input and OUT for giving output. The
address of IO device will be of 2 hexadecimal digits and can range from 00H to FFH. Using
these two is fairly straightforward as shown below.
Ins. No. Mnemonics Explanation

1 IN 80H Input command – it inputs the data from IO device
connected at port 80H into the accumulator register.

2 INR A Increment the input data by one

3 OUT 81H Output command – it outputs the data from
accumulator register to the IO device connected at port
81H

4 HLT Halts the system

Page 22 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

13.3 Results and Further directions – The input device (which might be keyboard) gives
8085 microprocessor 1 byte data on port 80H. This data by the very nature of the command IN
comes to accumulator register. Then it can be manipulated. In the program we have incremented
it by one. The data then is outputted to port 81H. Remember 1 byte data from accumulator only
will go to the designated output port (in our case 81H).

Topic / Program 14. Learning subroutines or functions

14.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- Learn how to create a simple
subroutine.

Subroutines in 8085 are the set of instructions
that perform a particular task. They can be
thought of as sub-programs (routines) other
than the main program (routine). They can be
8called9 whenever their help is necessary.
They are a very powerful tool and can be
called an arbitrary number of times as desired.
Subroutines are generally implemented by
Call (conditional and unconditional)
instructions and terminated by Return
(conditional and unconditional) instructions.
The working of subroutine is:
Whenever the call instruction is executed, the
execution is transferred to the location of
subroutine and the address of the next
instruction to be executed in the main
program moves to stack.
When the return instruction is encountered the
address on the stack goes to the program
counter and the main routine is continued
from next instruction.

Code location 5000 H
Subroutine 1 location 5009 H
Subroutine 2 location NA

Interrupt location NA

Data used in memory – (The location of
main code and subroutine are both shown)

Address Data Address Data

5000 H 3E 5008 H 76
5001 H 15 5009 H 80
5002 H 06 500A H C9
5003 H 16 500B H 00
5004 H CD 500C H 00
5005 H 09 500D H 00
5006 H 50 500E H 00
5007 H 27 500F H 00

It is worth mentioning that labels can be used
to implement subroutine in the simulators but
on the actual kit, actual addresses are to be
used.

14.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

In the following program, addition of two numbers kept in registers A and B initially is done
using subroutine named ADDN. ADDN is defined in line number 6 terminated by a return (RET)
instruction. Also, the subroutine definition begins after HLT i.e., outside the main code.

Page 23 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

Ins. No. Mnemonics Explanation

1 MVI A,15H Move value 15 to A (Accumulator).
2 MVI B,16H Move value 16 to B.
3 CALL ADDN Call subroutine ADDN

4 DAA Decimal adjust the result in A

5 HLT Halt the program.
6 ADDN: ADD B

Function definition

Add B to A

7 RET Return to main routine
here line 4.

14.3 Results and Further directions – This program highlight the basic implementation of
subroutine. There may be as many subroutines as one desires to make. Any subroutine can be
called from main routine or any subroutine any number of times as desired.

Readers to note that there exists conditional call statements like CC (Call if Carry), CZ
(Call if Zero), CPE (Call if Parity Even). These instructions use the status of flag register for
execution. Similarly, there exists conditional return statements like RC (Return if Carry), RZ
(Return if Zero), RPE (Return if Parity Even). Readers are advised to explore further about them.

Topic / Program 15. Learning software interrupts

15.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- In 8085 microprocessor, Interrupts
are of great importance, they allow the
programmer to interrupt the normal
processing of the microprocessor and execute
any other subroutine.
When an interrupt occurs, the 8085 completes
the current instruction and then acknowledges
the interrupt. It saves the address of the next
instruction to be executed on the stack and
fetches the interrupt service routine (ISR)
address from the predefined locations based
on the type of interrupt. The ISR executes,
and upon completion, the processor resumes
the main program.
There are two types of Interrupts, Software
Interrupts and Hardware Interrupts
(Discussed in next experiment).
There are 8 Software interrupts, ranging from
RST 0 to RST 7, here RST (Restart) prefix is
used to indicate Interrupt. All these Software

Code location 1000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location 0028 H

Data used in memory – (Shown for data)
Address Data Address Data

5000 H 01 5008 H 00
5001 H 09 5009 H 00
5002 H 07 500A H 00
5003 H ? 500B H 00
5004 H 00 500C H 00
5005 H 00 500D H 00
5006 H 00 500E H 00
5007 H 00 500F H 00

All these software Interrupts are maskable
(can be ignored, when required), and can be
easily masked or unmasked by using
instructions:

Page 24 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

Interrupts are Vectored (have fixed address)
and each Interrupt is of 8 byte. The address of
these interrupts ranges from 0000H to 0038H
and can be calculated by multiplying the
interrupt number with 8 and converting it to
hexadecimal representation. For an example,
RST 5 has its vectored address as (5�8 =40)10 = (0028)16 = 0028 �.

1. DI (Disable Interrupts)
2. EI (Enable Interrupts)

To better understand software interrupts, we
will develop a simple program that will check
the data at memory location 5000, If it is (0)
then it will perform addition of next two
memory bytes (i.e 5001H and 5002H) and if it
is (1) then it will perform subtraction of the
next two memory locations. The subtraction
will be performed using RST 5 software
interrupt and the result will be stored in
memory location 5003H.

15.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 #BEGIN 1000H (Assembler Directive – More about this in the relevant
experiment), to tell where to start executing the code in
memory from. HLT will automatically terminate it.

2 #ORG 1000H (Assembler Directive), to tell where to write the next lines of
code in memory

3 EI Enable all interrupts

4 LXI H,5002H Load HL pair with the address of second number
5 MOV B,M Copy this number to register B

6 DCR L Decrement HL pair to 5001H

7 MOV C,M Copy another number to register C

8 DCR L Decrement HL pair to 5000H

9 MOV A,M Copy the data of 5000H location to register A

10 CPI 00H Compare it with 00H

11 JZ ADDITION If zero flag is set (i.e 5000H contains 0), then jump to label
<ADDITION=.

12 RST 5 Call software interrupt 5 (RST 5)
13 JMP CONCLUDE Jump to <CONCLUDE= label
14 ADDITION: MOV

A,C
Copy First Number from register C to A ADDITION

ADD B

Add content of register B with A (A = A+B)

16 CONCLUDE: STA
5003H

Store the result to memory location 5003H CONCLUDE

 HALT THE PROGRAM

Page 25 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

15.3 Results and Further directions - In the above code, we learnt the basic initialization and
calling of a software interrupt. We used a RET instruction at the end of our subroutine to signal
our microprocessor that the subroutine is executed and now it can again go back to the main
program.

Please note:- Between two consecutive vectored locations of interrupts, only 8 byte of memory
locations are available. For example, between RST 5 and RST 6 whose locations are 0028H and
0030H, only 8 bytes are available. Hence ISR should be 8 bytes or less. If it is required that ISR
be of more than 8 bytes, following simple trick will work – At vectored location of ISR, use the
unconditional jump (JMP) instruction by choosing the address of jump as the address of ISR9s
definition.

Topic / Program 16. Learning Hardware Interrupts

16.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- We have already discussed the
interrupts and software interrupts in the
previous Experiment. Apart from the software
interrupts discussed, 8085 also has 5 hardware
interrupts. They are TRAP, RST 7.5, RST 6.5,
RST 5.5, INTR. TRAP is often referred to as
RST 4.5.
All these interrupts are vectored interrupts
(except INTR) and have defined addresses.
The order of priority and the address is:

Interrupt Address Priority Order
TRAP 0024 H 1

RST 7.5 003C H 2

RST 6.5 0034 H 3

Code location 1000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location 002C H

This program creates an infinite loop. It starts
by loading the value 05H into register B, then
enters LOOP2 where it continuously
decrements B. Once B reaches zero, the
program jumps back to LOOP, resetting B to
05H, creating an endless cycle.

Because this is an infinite loop, the program
never reaches the HLT (halt) instruction. The
only way to stop it is by using a hardware

HLT
17 INTERRUPT SERVICE ROUTING (ISR)
18 #ORG 0028H (Assembler Directive), Initialize to write the code from

memory location 0028H

19 MOV A,C Copy the content of register C to A RST 5

20 SUB B Subtract content of register B from A (A = A-

B)
21 RET Return to the main program

Page 26 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

RST 5.5 002C H 4

INTR - 5

It is very important to write the command EI
to enable interrupts. By default, all these
interrupts are disabled except TRAP.

interrupt. When the RST 5.5 interrupt is
triggered, the interrupt subroutine is activated,
redirecting execution to memory location
002CH. Here, the value of B is moved to the
Accumulator, and then the program jumps to
LOOP3, where the HLT instruction finally
halts the program

16.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 #BEGIN 1000H Location of the main program

1 #ORG 1000H Starting writing the code from memory location
1000H

2 EI Enable the maskable interrupts

3 MVI A,06H Move a value 06 to A (Accumulator).
4 LOOP: MVI B,05H LOOP Move a value 05 to B

5 LOOP2: DCR B LOOP2 Decrease the value in B by 1.
6 JNZ LOOP2 Jump to LOOP2 if zero flag reset.
7 JZ LOOP Jump to LOOP if zero flag set.
8 LOOP3: HLT LOOP3 Halt the program

9 #ORG 002CH RST 5.5 Writing ISR from the
Location of RST 5.5

10 MOV A, B Move the contents of B to A

11 JMP LOOP3 Jump to LOOP3

16.3 Results and Further directions - Since INTR has no predefined memory location it
depends on an external device for the address. Hardware interrupts are useful in error handling,
safety incidents, peripheral communication etc.

Topic / Program 17. Learning Assembler Directives

17.1 Detailed objective and coding strategy– The detailed objective with the code defaults
(i.e., where does the code start from in memory and where is the data kept etc.) is given below-

Objective- In this experiment, we will learn
the usage of some assembler directives used
in 8085 assembly programming.
Assembler Directives are some special
commands that make the assembly

Code location 1000 H
Subroutine 1 location NA
Subroutine 2 location NA

Interrupt location NA
1. ORG- (Origin) It specifies the memory

Page 27 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

programming more structured and
understandable. These instructions typically
begins with a period (.) or a hash (#) to
distinguish with the normal 8085 instructions.

Assembler Directives are not directly
executed by the CPU but are interpreted by
the assembler during the assembly process.
This provides a way to the programmer to
communicate with the assembler and specify
how the code should be translated or stored
before execution.

Here are some of the basic 8085 assembler
directives:-

address from where the code should
be stored.

2. DB- (Define Byte) It reserves a Byte
of memory space for storing any
variable or data.

3. DW- (Define Word) Similar to DB, it
reserves two Byte or a single Word of
memory space for storing any variable
or data

4. EQU- (Equation) It is used to define a
constant value in the memory.

5. END- (End of program) It marks the
end of program.

We are going to develop a simple 8085
program to add two bytes of data ,and will use
assembler directives to structure this program

17.2 Code with explanation – Following is the code that fulfils the above objective with
explanation –

Ins. No. Mnemonics Explanation

1 #ORG 2000H Here, we are defining our code segment from 2000H to store
the data from this location onwards.

2 #DB 28H Store our first number (say 28H) in memory location 2000H

3 #DB 10H

Store second number (say 10H) in memory location 2001H

4 #ORG 1000H Define the address (1000H) from where our code will be
stored in the memory.

5 LXI H,2000H Load the address 2000H in register pair HL, so that we can
use register M to get the value at that memory location

6 MOV A,M Copy our First number from register M to accumulator
7 INX H Increment register pair HL by 1 to get address of second

number
8 ADD M Add register M (Second number) with accumulator (First

number) (A = A+M)
9 #END End the program.
10 # BEGIN 1000H Specify where from the first line of code is to be executed.

Page 28 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

17.3 Results and Further directions - In this program, we used ORG directive to specify the
memory address from where we want to store our code, we then used DB directive to store our
numbers (28H and 10H) at that particular memory location. From line number 4 onwards, we
then store our code from memory location 1000H, here we sculpt a basic program to add two
numbers stored at memory location 2000H and 2001H. On execution of the above program, we
get the result 38H, which is correct and therefore we successfully performed our first assembly
code using directives. The above program may appear to be very simple, and its execution is
possible even without using assembler directives. However, incorporating these directives
elevates the flexibility and readability of the program which makes this very useful in
programming complex assembly codes. Line no. 10 plays extremely important role in deciding
the location of 1st executable line of code. This line can be written anywhere in the code as
before execution assembler directives do their work.

Topic / Program 18. Instruction set of 8085
microprocessor

8085 microprocessor has a total of 74 instructions from which 246 valid patterns can be made.
These are as follows –

S.No. Mnemonics and Operands Opcode(HEX) OPCODE(DEC) Bytes

1 ACI Data CE 206 2

2 ADC A 8F 143 1

3 ADC B 88 136 1

4 ADC C 89 137 1

5 ADC D 8A 138 1

6 ADC E 8B 139 1

7 ADC H 8C 140 1

8 ADC L 8D 141 1

9 ADC M 8E 142 1

10 ADD A 87 135 1

11 ADD B 80 128 1

12 ADD C 81 129 1

13 ADD D 82 130 1

14 ADD E 83 131 1

15 ADD H 84 132 1

16 ADD L 85 133 1

17 ADD M 86 134 1

18 ADI Data C6 198 2

19 ANA A A7 167 1

20 ANA B A0 160 1

Page 29 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

21 ANA C A1 161 1

22 ANA D A2 162 1

23 ANA E A3 163 1

24 ANA H A4 164 1

25 ANA L A5 165 1

26 ANA M A6 166 1

27 ANI Data E6 230 2

28 CALL Label CD 205 3

29 CC Label DC 220 3

30 CM Label FC 252 3

31 CMA 2F 47 1

32 CMC 3F 63 1

33 CMP A BF 191 1

34 CMP B B8 184 1

35 CMP C B9 185 1

36 CMP D BA 186 1

37 CMP E BB 187 1

38 CMP H BC 188 1

39 CMP L BD 189 1

40 CMP M BD 189 1

41 CNC Label D4 212 3

42 CNZ Label C4 196 3

43 CP Label F4 244 3

44 CPE Label EC 236 3

45 CPI Data FE 254 2

46 CPO Label E4 228 3

47 CZ Label CC 204 3

48 DAA 27 39 1

49 DAD B 9 9 1

50 DAD D 19 25 1

51 DAD H 29 41 1

52 DAD SP 39 57 1

53 DCR A 3D 61 1

54 DCR B 5 5 1

55 DCR C 0D 13 1

56 DCR D 15 21 1

57 DCR E 1D 29 1

58 DCR H 25 37 1

59 DCR L 2D 45 1

60 DCR M 35 53 1

61 DCX B 0B 11 1

Page 30 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

62 DCX D 1B 27 1

63 DCX H 2B 43 1

64 DCX SP 3B 59 1

65 DI F3 243 1

66 EI FB 251 1

67 HLT 76 118 1

68 IN Port-address DB 219 2

69 INR A 3C 60 1

70 INR B 4 4 1

71 INR C 0C 12 1

72 INR D 14 20 1

73 INR E 1C 28 1

74 INR H 24 36 1

75 INR L 2C 44 1

76 INR M 34 52 1

77 INX B 3 3 1

78 INX D 13 19 1

79 INX H 23 35 1

80 INX SP 33 51 1

81 JC Label DA 218 3

82 JM Label FA 250 3

83 JMP Label C3 195 3

84 JNC Label D2 210 3

85 JNZ Label C2 194 3

86 JP Label F2 242 3

87 JPE Label EA 234 3

88 JPO Label E2 226 3

89 JZ Label CA 202 3

90 LDA Address 3A 58 3

91 LDAX B 0A 10 1

92 LDAX D 1A 26 1

93 LHLD Address 2A 42 3

94 LXI B 1 1 3

95 LXI D 11 17 3

96 LXI H 21 33 3

97 LXI SP 31 49 3

98 MOV A,A 7F 127 1

99 MOV A,B 78 120 1

100 MOV A,C 79 121 1

101 MOV A,D 7A 122 1

102 MOV A,E 7B 123 1

Page 31 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

103 MOV A,H 7C 124 1

104 MOV A,L 7D 125 1

105 MOV A,M 7E 126 1

106 MOV B,A 47 71 1

107 MOV B,B 40 64 1

108 MOV B,C 41 65 1

109 MOV B,D 42 66 1

110 MOV B,E 43 67 1

111 MOV B,H 44 68 1

112 MOV B,L 45 69 1

113 MOV B,M 46 70 1

114 MOV C,A 4F 79 1

115 MOV C,B 48 72 1

116 MOV C,C 49 73 1

117 MOV C,D 4A 74 1

118 MOV C,E 4B 75 1

119 MOV C,H 4C 76 1

120 MOV C,L 4D 77 1

121 MOV C,M 4E 78 1

122 MOV D,A 57 87 1

123 MOV D,B 50 80 1

124 MOV D,C 51 81 1

125 MOV D,D 52 82 1

126 MOV D,E 53 83 1

127 MOV D,H 54 84 1

128 MOV D,L 55 85 1

129 MOV D,M 56 86 1

130 MOV E,A 5F 95 1

131 MOV E,B 58 88 1

132 MOV E,C 59 89 1

133 MOV E,D 5A 90 1

134 MOV E,E 5B 91 1

135 MOV E,H 5C 92 1

136 MOV E,L 5D 93 1

137 MOV E,M 5E 94 1

138 MOV H,A 67 103 1

139 MOV H,B 60 96 1

140 MOV H,C 61 97 1

141 MOV H,D 62 98 1

142 MOV H,E 63 99 1

143 MOV H,H 64 100 1

Page 32 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

144 MOV H,L 65 101 1

145 MOV H,M 66 102 1

146 MOV L,A 6F 111 1

147 MOV L,B 68 104 1

148 MOV L,C 69 105 1

149 MOV L,D 6A 106 1

150 MOV L,E 6B 107 1

151 MOV L,H 6C 108 1

152 MOV L,L 6D 109 1

153 MOV L,M 6E 110 1

154 MOV M,A 77 119 1

155 MOV M,B 70 112 1

156 MOV M,C 71 113 1

157 MOV M,D 72 114 1

158 MOV M,E 73 115 1

159 MOV M,H 74 116 1

160 MOV M,L 75 117 1

161 MVI A,Data 3E 62 2

162 MVI B,Data 6 6 2

163 MVI C,Data 0E 14 2

164 MVI D,Data 16 22 2

165 MVI E,Data 1E 30 2

166 MVI H,Data 26 38 2

167 MVI L,Data 2E 46 2

168 MVI M,Data 36 54 2

169 NOP 0 0 1

170 ORA A B7 183 1

171 ORA B B0 176 1

172 ORA C B1 177 1

173 ORA D B2 178 1

174 ORA E B3 179 1

175 ORA H B4 180 1

176 ORA L B5 181 1

177 ORA M B6 182 1

178 ORI Data F6 246 2

179 OUT Port-Address D3 211 2

180 PCHL E9 233 1

181 POP B C1 193 1

182 POP D D1 209 1

183 POP H E1 225 1

184 POP PSW F1 241 1

Page 33 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

185 PUSH B C5 197 1

186 PUSH D D5 213 1

187 PUSH H E5 229 1

188 PUSH PSW F5 245 1

189 RAL 17 23 1

190 RAR 1F 31 1

191 RC D8 216 1

192 RET C9 201 1

193 RIM 20 32 1

194 RLC 7 7 1

195 RM F8 248 1

196 RNC D0 208 1

197 RNZ C0 192 1

198 RP F0 240 1

199 RPE E8 232 1

200 RPO E0 224 1

201 RRC 0F 15 1

202 RST 0 C7 199 1

203 RST 1 CF 207 1

204 RST 2 D7 215 1

205 RST 3 DF 223 1

206 RST 4 E7 231 1

207 RST 5 EF 239 1

208 RST 6 F7 247 1

209 RST 7 FF 255 1

210 RZ C8 200 1

211 SBB A 9F 159 1

212 SBB B 98 152 1

213 SBB C 99 153 1

214 SBB D 9A 154 1

215 SBB E 9B 155 1

216 SBB H 9C 156 1

217 SBB L 9D 157 1

218 SBB M 9E 158 1

219 SBI Data DE 222 2

220 SHLD Address 22 34 3

221 SIM 30 48 1

222 SPHL F9 249 1

223 STA Address 32 50 3

224 STAX B 2 2 1

225 STAX D 12 18 1

Page 34 of 34

Fundamentals of 8085 Microprocessor Programming
by Dr. Manish Kashyap, Tushar Kukreti and Vivek Kumar

226 STC 37 55 1

227 SUB A 97 151 1

228 SUB B 90 144 1

229 SUB C 91 145 1

230 SUB D 92 146 1

231 SUB E 93 147 1

232 SUB H 94 148 1

233 SUB L 95 149 1

234 SUB M 96 150 1

235 SUI Data D6 214 2

236 XCHG EB 235 1

237 XRA A AF 175 1

238 XRA B A8 168 1

239 XRA C A9 169 1

240 XRA D AA 170 1

241 XRA E AB 171 1

242 XRA H AC 172 1

243 XRA L AD 173 1

244 XRA M AE 174 1

245 XRI Data EE 238 2

246 XTHL E3 227 1

Dr. Manish Kashyap

Dr. Manish Kashyap is Assistant Professor at Department of Electronics
and Communication Engineering, Maulana Azad National Institute of
Technology Bhopal, India. His research areas include Digital image
Processing, Embedded Systems, Artificial intelligence and Machine
learning. He has authored good number of research papers in Scientific
Citation Indexed and Scopus indexed journals and conferences. He is
also the author of book titled – <Digital Image Processing using Python=.

His updated research profile can be accessed at –
https://orcid.org/0000-0001-6951-8447

Official Website –
https://www.manit.ac.in/content/dr-manish-kashyap

Tushar Kukreti

Tushar Kukreti is an Undergraduate Student at Department of
Electronics and Communication Engineering, Maulana Azad National
Institute of Technology, Bhopal, India. He has a keen interest in
microprocessors and embedded systems and enjoys learning about
hardware and system design.

Vivek Kumar

Vivek Kumar is an Undergraduate Student at Department of Electronics
and Communication Engineering, Maulana Azad National Institute of
Technology, Bhopal, India. He finds C++, assembly language and
microprocessors interesting. He has a passion for understanding system
design and low-level programming.

ISBN: 978-93-90728-96-1

DOI: 10.5281/zenodo.14885842

https://orcid.org/0000-0001-6951-8447
https://www.manit.ac.in/content/dr-manish-kashyap

